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A Future Polarized Drell-Yan Experiment 
 at Fermilab

David Kleinjan
Los Alamos National Laboratory

E906/E1039 Collaboration
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E906 (Seaquest) → E1039 in a Nutshell

25 mFNAL Beam

@ 120 GeV

Liquid H2, d2, 

And Solid targets

Put in Polarized Target!

p+p↑ → γ* (μ+ μ-)
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Nucleon Spin Puzzle
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Phys.Rev.Lett. 113, 012001 (2014)
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Nucleon Spin Puzzle

Lattice QCD calculations 
indicate as much as 50% 
come from quark O.A.M.

ΔLvalence ≈ Small

Hints of sea quark O.A.M 
already seen ΔΣ

q
 ≈ 25%

2 L
q
 ≈ 46%[0%(L

valence
)+46%(L

sea
)]

2J
g
 ≈ 25%

Sproton  =  
1
2

 =  
1
2
ΔΣ+J g+Lq+Lq̄

L
u
 ≈ -L

d

Lattice QCD: K.-F. Liu et al arXiv:1203.6388
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Hints of Non-zero Sea Quark O.A.M.

Phys. Rev. D71 094015 (2005)

The pion cloud model 

Simple parity conservation

Pions have nonzero 
O.A.M.

Sea quarks should carry orbital angular momentum.
Can be quantified via the TMD Sivers function. 

L
π
  = odd

   P = (-1)l+1

   JP = 0+

|p>=|p> + |N0π+>+ |Δ++π-> +…

Pions: Jp=0- Negative Parity
Need L=1 to recover proton’s Jp=½+ 

u d̄ ūd
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Leading Twist TMD PDFs
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One of 8 TMD PDFs:

Correlation between proton's transverse spin and 
transverse parton momentum

Quark Sivers Function Directly accessible with: 

Quark Orbital Momentum and the Sivers Function

f 1T
⊥

( x , kT )

Polarized Semi-Inclusive DIS
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Polarized Drell-Yan

e+p↑ → e+h +X p+p↑ → γ*(μ+μ-)
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Accessing Quark Sivers distribution
Polarized Semi-Inclusive DIS

L-R asymmetry in hadron production

Quark to Hadron Fragmention 
function

Valence-Sea quark: Mixed

Polarized Drell-Yan

AUT
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L-R asymmetry in Drell-yan 
production
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Cornerstone Prediction of QCD

The same Sivers distribution in 
both processes

But with opposite sign

T-Odd

Initial state, Final state switch

Polarized Semi-Inclusive DIS Polarized Drell-Yan
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Sea Poor
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Accessing Sea quarks via Drell-Yan

target  sea 
quark

beam valence 
quark

d2σ (q q̄→μ+μ- )
d xb d x t

 = 
4 πα

2

9 xb xt

1
s ∑q

eq
2 [ q̄t ( xt )qb ( xb )+qt ( xt ) q̄b ( xb ) ]

smalldominatesq

q

μ+

μ-

γ*

Fixed Target Drell-Yan

Seaquest Experiment

In p+p kinematics

Quark from Beam

AntiQuark from Target

Excellent Acceptance Sea Quark 
Region of interest (0.1 < xB < 0.4)
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E1039 Physics Summary

Little is known about Sea Quark 
Angular Momentum

E866 data, interpreted by the pion 
cloud model points to non-zero sea 
quark angular momentum

The E1039 Polarized Target Drell-
Yan Experiment provides opportunity 
to study possible Sea Quark O.A.M.

Continuation of Seaquest Experiment

Measure:

Phys. Rev. D71 094015 (2005)

A N( pbeam+ ptarget
↑

→DY )∝
N L

DY
−N R

DY

N L
DY

+N R
DY

∝  
f 1T

⊥ ,ū
( xt )

f 1
ū
( xt )
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 What is needed for E1039 
Proton Beam

Improved Focusing

In Development at FNAL

Polarized Proton Target

In Development at LANL, UVa

New Shielding by FNAL

Dimuon Spectrometer

 Seaquest experiment

Collaboration

Successfully running Seaquest Dimuon Spectrometer
Elan McClellen's Talk PreviousFNAL proton beam Polarized

Target

γ* →μ+μ-

E beam
 = 120 GeV
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Procedure to Polarize Protons
Utilize Dynamic Nuclear Polarization

Thermal Equilibrium Polarization from 
Boltzman Distribution, Zeeman Splitting of 
Spin States 

T = 1 Kelvin, B = 5 Tesla
Pelectron = 0.998

Pproton = 0.005, since μN/μB ~10-3

Can polarize protons in Paramagnetic 
material through RF transitions

Target Material:  Irradiated NH3

P(s=1/2, i)=tanh [μi gi B

2 kB T ]
JLab Target
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ν
p

Electron
Proton

Can polarize protons in Paramagnetic material 
through RF transitions

Irradiate NH3 to Create Paramagnetic Centers

Dipole-Dipole interaction between electron-proton

Pump on electrons @ Larmor Frequencies νe ± νp = 
140.127 ± 0.213 GHz

ν
e

ν
p 

ν
e
 + ν

p
ν

e
 - ν

p

τe <<τp (relaxation time)

Polarization up to 90%

Measure How?

B⃗

P(s=1/2, i)=tanh [μ i gi B

2 kB T ]

Procedure to Polarize Protons
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Proton Polarization Measurement using NMR

NMR Coil 
(inductor)

around target.

NH
3

Polarization measurement using NMR technique, basics

Apply RF at proton Larmor frequency, νp ≈ 213 MHz, to RLC circuit

Measured with an inductor coils around target

Measures Polarization of Protons by absoption or emission of RF

Voltage increases for absorption, decreases for emission (spin flip up/down)

213 MHz RF high gain system

Stable, low noise system required to detect TE signal

Keith et al. NIM A 501 (2003), 327 JLAB
Well established technology: SLAC, JLAB, PSI…

TE Signal P ≈ 0.5% μ-wave pumping P ≈ 92%

JLab Target
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What is Needed for Polarized Target

5T magnetic Field

Liquid 4He cooled Superconducting 
magnet

1K Temperature

Liquid 4He cooled using evaporation 
techniques

RF transition provider

140 Ghz Microwave tube

Polarization Measurement

NMR apparatus
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Polarized Target System

Target Material NH
3

Irradiated at NIST

Microwave signal to
Induce spin flips

NMR Polarization
Measurement

Cryostat: UVa

Superconducting 
Coils for Magnet: 5T

Roots pump system used to 
pump on liquid 4He 
evaporation to reach 1K

12000 m3/hr

μ-wave
horn

JLab Target
(example)



May 24, 2015 18 David Kleinjan

Status of E1039 Experiment 
Magnet: Cryostat + Target Stick: Pumps:

Oxford Instruments

Refurbished

New electronics, gauges, 
meters

Acceptance Tests 
performed flawlessly

Design at UVa

Elliptical tube 8cm long

Will have two target 
sticks with two-three 
cells each

Performance tests 
underway at LANL
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Designed and Developed at 
LANL

Tested 7/2014, worked well

Layout for VME crate cards 
finished

New 140GHz tube purchased

New Power supply purchased

Backup Tube U of Mich

Backup Power Supply UVa

Status of E1039 Experiment 
NMR System:

Microwave Tube:
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Yield and Asymmetry Estimates

Cuts Acceptance/
Efficiency

Events

All DY in kinematic range 100% 5.01E+07

µ+µ- geometric acceptance 2.2% 1.10E+06

Trigger Efficiency 58% 6.39E+05

µ+µ- Pair Reconstruction Efficiency 57% 3.68E+05

Δ AN
DY  = 

1
f

1
P

1

√N total

f ≈ 3/17

P ≈ 0.80

NDY = eff.*L*σ
DY

One year L = 5.22x1042 cm-2

Target and Accelerator Efficiency:  50%

Spectrometer Efficiency:  80%

Cross Section σDY = 0.024 nb

Kinematic Range: 4 < M < 9 GeV, -0.2 < xF 0.8

Based on Present Beam 
and Spectrometer 
Performance at Seaquest

E1039
Est.

A N
DY  =  

N L
DY−N R

DY

N L
DY

+N R
DY
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Summary and Conclusion

First measurement of sea quark 
Sivers (ū)

Sign and value

If AN ≠ 0

Major discovery

Evidence for Lsea ≠ 0

If AN = 0

 Lsea = 0? Where is nucleon spin?

Source of Sea flavor asymmetry a 
mystery

A N
DY  ∝  

f 1T
⊥ ,ū

( xt )

f 1
ū
( x t )

Statistics shown for one calendar year of running : 
 L = 5.2 *1042 cm-2, POT = 9.7*1017          
Running will be two calendar years of beam time

Begin Setup Fall 2016
Start taking data Spring 2017!
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Backup
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Systematics

Systematics control

Reverse pol direction once a day

Reverse Fmag,Kmag every two days

Reverse 5T magnet every target replacement

Background measurements every shift with target out

Absolute 1%

Luminosity precision on different pol directions
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Leading Twist TMD PDFs
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Outline

Motivation

Nucleon Spin Puzzle

Quark Orbital Momentum and the Sivers Function

Accessing Sivers via Polarized Drell-Yan (p+p↑ → μ+μ-)

Transition of Seaquest (E906 → E1039)

Building a Polarized proton Target

Status of Polarized Target

Outlook
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